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KESF OF A SIMPLY.
BEAM TO A PURELY RANDOM GAUSSIAN PROCESS*®

by
J. C. Samuels** and A. C. Eringent+s
Purdus Univereity
ABSTRACT

The generalized Fourier analysie ie applied to tbe damped
Timosbenko beam squation to caleulate tbe mean equare values of die-
Placements and bending etrees, resulting from purely random loading.
Compared with the calculatione based on tbe rlaseical beam tbecry [4],
1t was found that tbe dieplacement correlaticns of both tbecries were
in excellent agreement. Moreover tbe mean equare of the bending
strees, contrary tc tbe resulte of tbe clessical beam theory, was found
0 be convergent. Computations carried out with ¢ digital computer

are plotted for both tbeories.

¥Present vork vas epcisx x4 by the Office of Naval Ressarch
**Regearch Aselstant, Divieion of Engineering Sciences, Purdue University
#*4professcr, Divieion of Enginesring Science., Purdue Univereity
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L. Introduction

The responee of linear slastic beams to random foreing functicas
has been studisd by Ornstein (1], Houdijk (2], van Lear and Uhlenbeck (3],
and Eringen [4]. Eringen calculated the mean square displacements as vell
as the mean square stresses produced in a beam subject to & purely
Tandom losding, and found that the series fo7 the wean square stresses
diverge, He then suggested that the cause of thig divergence may be
traced to the inadequateness of the classical beam theory. In order to
ascertain this point, one is then led to conelder s more refined theory
containing & mechanism which will Zavorably respond to such a load-

ing. The present study is the result of such a consideretion.

At first, the Timoshenko beam theory modified with ths addition
of & trenelatory velocity damping appeared to be sdequate. However, a
closs examination showed that 0ot only this, but the addition of Voigt-
Sezawn type of internal damping did not produce an adequate theory lead-
ing to converging series for the Bedn square bending stress. Introduc.
tion of s linear damping to rotatory motion, however, produced the
expacted result. With the addition of such & mechanism to Timoshenko
beam, 1t wvas no longer necessary to complicate the analysis by using
internal damping. The enalysis of this model 1s carried out for &
8imply supported beam subject to random Pressure and purely rendom

concentrated load.

An electronic computer vus uged to compute the displacement and

bending stress correlation functions.
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2, Differential Equations

Fig. 1 Element of tbe Beam

Equations of rotatory and translatory motions of an element of the
Timoshenko beam respectively are (Fig. 1)

o B &
1) Ere-zls ey -Dlat_?

2

(2) §+p+ (12 "1’%’“2:5’%3'?
vhere M, Q, P are the bending moment, vertical shearing force and the
vertical applied load; 11, 12 are surface shearing stresses which will
Play the role of & damping due to ratation; h, A, I are the thickness,
the crose eection mrea, and the moment of inertis about the neutral
axis, o 1s the mess density, ¢ and v are the bending angle and the

deflection, Coordinate x locates the cross section and t is the time.

In the Timosbenko beam theory e have




(3) ;-w+ s e ¥ ?
2
() ¥ e w -:xa_‘;
-3
(5) Q=x6ay
Where 7 is the shearing angle, E and G are Young's and shear modulif
respectively, and k is & constant which is adjustable to take into
accound the effect of the shape of the cross section. Here vy 18
termed the bending deflection [5). For k, Timoshenko and E. Relssner
respectively use 2/3 and 5/6.
In order to arrive at & rotatory damping similar to linear velocit,
damping, ve set
6 7y cfom %" , B, comstant.

This merely introduces & mechanism for the rotatory damping and
is no more or less & sacrifice then the universally accepted idea of
linear damping 8, /3t present in (2). It may be thought of as being
the air friction combined with all the frictional resistance against
the rotation of the element of the beam,

If we use (3) - (6) in (1) and (2), we obtain:
(7) 51—232 XA + kaa X = 132"o X
DEZ - eermg i tgen @
2
¥, 3w o
xa Fep s xm Fox

Differentiating the firat of (7) with respect to x and using the

second of (7) to eliminate ¢, we find
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e R
(8) wep+ m -EI—! + 913_?.2 '913)
where
s O P
v = EI o -(nI~ )-—2—2— '(‘k— *91)—2_

&3t

=

2 r 8 2
12 P o ™
RS Rl o "'3"““’@’;5*%&

A simple relation exisis between w mnd Vg This is found by com-
bining (2) - (5), integrating the result with respect to x snd excluding

» rigid body diaplacement from tbe rosult. Hence
L vy g Py
(10) Wy Zw vy e g (el—g® v 8) =2 - E1 B
ot '
Sometimes v is called the shesr deflection [5].
With the {ntroduction of (10), equation () may be simplified to
(11) Iwy =P

Equation (8) is tne Timoshenko beamw equation modified with linear

and rotatory damping snd external loading. In what follows, we also

need the boundary conditions for a simply-supported beas:

(12) v =dp/ax =0 atx =0, L

From (10), (3), snd (4), 1t s clesr that if we make
(13) wy = az|:B/a:z2 =0 stxwo0, L

tben the boundary conditions (12) would be satisfied. Hence we -y
firet solve (11) subject to (13) to obtain vy Equation (10) then

gives w.



3. Formal Solution

In order to determine the mean square values of various quantities
such as the displacsments and the stresses, ve must first find s steady- B
stats solution of (8) matisfying (12). This is the same thing as solv-
'ng (11) subject to (12). Generalized harmonic analysis [6) can thsn
be used to complete the problsm. A formal solution of (11) satisfying
(12) has the form
o0

(1) wylx,t) Z v (t) sin (amx/1)

n=l

If we uss (14) and a similar expression for P with P,(t) replacing v (1)

in {11), ve obtain an ordinary diffsrential squat. 1 for vn(t). The

Fourier transform of this equation with respect to t gives: -
- 4 .

(15) 9.(¢) = (c'3/ED) B ()/D(8)

vhere

(16) B (8) = g% uag? - btf v ietva

and

- - 2, IR
(17) a = Bohos by 2 B, + By'B, " BCy 4, = Mn 3

Ao * (L /e B e m) 5w L oA F e ar?)
(19) ¢y = (/on) 12 o D2 el h 5 ko/E, e o (2/p)M2

R N XA
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Purther o bar on top of o latter repreicnts tha Fourier transform, . g.,

o0
(9 G0 fvn(c) g,
-0

From the axpression of P(x,t) of tha form (14), the Fourier coefficient
’n(“ WY be found to be

L
2

@ £ o f [ RLD e () o
With the use of (20) 1n (13) we may invert (15) to cbtatn

L oo
@) v (0 = @vam [ [T 0 ,0) a0) ata /) @

L

~00

whare

L L
@ v = [Ty g o
~00

ie the weighting functioco of the system for the n"’ node of wiWmtion.

Through equation (%) we nov pave vn(x.t). If ve further use
this result in (10), we obtain w(x,t), thas completing e steady-stete
solution of (8) subject to (12).

b, Evaluatioo of w,(t)
—_n

Contour 1 -y e used te {a1).
For t>0 the appropriste contour C for this integral ie the upper heif

©of & circle of redius R in the {-plane having the origin et { = 0. It
can be shown that the integral
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W () -éﬁjé < () ag

along the seml-circular arc vamishee as Ryoo, and that along the real
axie gives (22), which by the theory of residues will be 27! times the
éum of the residues within the contour. To obtain the residues, we
need to locate the poles of Dn(;) = 0, which in view of (16) 1s the

same thing as finding the roots of the frequency equation:

b 3 2 -
(23) 2 + ez * bz +cnz+dn-o,zx1;

The roots of the quartic (23) can be determined exactly by using the
known formulae for roots. However, the complexity of these formilae
would make the result difficult to interpret. Thus we use an approxi-
mate method which, for small damping, introduces negligible errors in
the final results. We take the transverse and rotatory damping coeffici-
ents B and B) to be the same order of magnitude. This means x = o(1).
For 50 small a natural method for Tinding the roots of {1v) 15 to use a
perturbation procedure in which Bo is the perturbation parameter. Thus
ve write

2
2 -
(au) 2 za*ﬂozl‘ﬂoze""

Upon substitution of this into (23), using (17) snd eetting the coef-
ficlents of various powers of Bo equal to zero, we obtain

. 4 2
1.0, Z, +Bz +d =0
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These equations may be solved very simply since z_ satisfies a biquadrastic

°
while all the other zy satisfy linear equations. Hence

T, G A e, e, s
e R 2 43
(25) w, ® [an + Q(nn - han) ]
R 2 H
My =B -1 (87 - ua))
and
.2 2 -1
(26) 2y ® -(A°<‘ + cn)(uzo +2B)
We likewise obtain z,,.... However in the present work, it wil) not
be necessary to obtain the higher order terms.

Ve note that the dependence of C_ On n does mot violste the per-
turbation since for large n we have z = G(n), thus making € % and 0z’

o(ni) vwhile the remaining terms are o(n“].

An examination will show that an - 44,20, Hence w and u
are real. Using (24) - (26) ve may now write Dn(;) to a linear approxi-

mation in Bo as
D(8) 3 (G0 % 4L - L8« tm),
;1 : vyt s, ;2 T He 1bn,
@1 5, = p(aw? ) ? . 25t

N 2 2 -1
a = Bo("o"n -r:n)(‘uan -ZBn)
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and an ssterisk represents complex conjugate e.g. ;l' - - xbn.
By use of Cauchy's theorem of residues, we ind that W (¢) = 0 for
t<0 and

ig.t 1.t
1 +Pe 2

W(t) = In (Ple o ) for t50

-1 -1 -1
G R R (A N (2!
-1 -1 -1
Py=u (L, - L7, + Y
Here Im represents the imaginary part of the complex quantity. Sub-
stituting the first of (28) into (21) and the result imto {14), we
find

X L
(29) wglx,t) = -(2=“A/EIL)Z (f

ig, (t-t tE,(t-r
CJ( ) Cz( ))
nel

%0
Im( Pl

P(¢,7)ar] sin (nme/L)at} sin (amx/L)
This completes the solution of the deterministic problem. For through
(10), we can calculate wix,t).

2 L o0 g (t-1) 18, (t-1)
(30) w(x,t) = -(2c"x/m)Z[\/ [f mge 1 age 2 )

n=l o o

P(¢,7)ar] sin (nm8/L) 48} ein (omx/L) 5 |
g -t~ (rz/xcz);f + (ar® AL 1)+ (rﬁnz/x)kd,

(=12

5. The Autocorrelation Function of the Dis; lacement
and the Bending Moment

The time average of s function w(x,t) is defined by

Lm | 7
(31) <w(x,t)> = Tpoo 2—1‘\/‘ w(t,t + 1) dr.
-7
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For an ergodic process this average is known to he equal to the

expectation (ensemble average) E{w(x,t)} of the function wix,t)., If

the origin selected for time t does not effect the expectation, i.e.

E{x(x,t + 1)) = Efw(x,t))

we say that the process is stationary. For a stationary ergodic

Drocess, therefore, we may write:
1 T
Ewlv,t)) = <w(x,t)> = Lim QT_./. wlx,t) (gt + T)dt
Troo )

(52) T
Blv(n,e) vle « D} 2 R0xt,0) = 1 gk f w(x,t) w(E,t + 1) at
T-400 ;Y

Here R, is culled the autocorrelation function of w(x,t). We note that
the mean square value of w(x,t) follows from the second of {31) by set-
ting T = O, The aim of the present paper is to determine the auto-
correlation functions of the displacement v and that of the hending
stress in terms of the autocorrelation function %(X,l,‘!) of the

applied load, i.e.
(33) Ry(x,8,7) = B{P(x,t) P(t,t + 7))

This latter quantity is obtained from a record of the time history

of the load P(x,t}). ILater for this quantity, we shall select the
fundamental cease of purely random process in time with temporal corre-
lstion in two space points, vanishing vhere the points are not coincident.

More precisely



(34) R,(x,4,7) = Db(x-¢) 5(1)

vhere b 15 the Dirac delta function. This form is commonly used in the
treataent of the Brownian motion, but it is doubtful if any real func-
tion could comply with it exactly.

Using (k) with vn(t) &iven by (21) in place of v in the second of

(32), ve obtain
D L A
(39) 8, = @eyen) ) (jo jo tf JRACEAD)
m,nel -00 ~00

R (x',87 + ¢ - s) dr as) dx'de’) sin (ome/L) oin (g /L)

Upon substitution of (34) this gives

00
06w, =§<c“x/m?iisn(f) sin (ame/L) stn (om/L)
B L
where
00
ON s w2 [ v v ar

-00

We may now use (28) {n (37) to evaluate this integral
8.(s) = Real (nle“l‘ + Mzej';?‘)
where
G8) = 12T f e ugy gt re g et e,
RS Ak ¥ N

R (A N A SNSRI X

Lie, - ;1")'1 AN
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The real form of (38) is
-b T
En('() e B (En cos wx + ’n sin (Jn'K)
-t

+e ((;n cos Mt 4+ Hn sin un1)

(39)
Sy ew Ay

26, My ¢ ar A

For small Bo these may be simplifisd to

& -l -
E (25n) w

(w,

(ho) 7, ¥ (2wt w?-u?2, 2N ? L u?)

™M -1 -2, 2 2,-2
6, % (2™t P uE

w -l -2
Hy ¥ (eun) ¥y (wn e

The total dfsplacement correlation Rv is obtained by substituting the
first of (30) into the mecond of {31). The result is ldentical in
form to (36) and (38) with M, and M, calculsted by replacing P) and P,
by Ql and 02 respectively. The real form of Rv may be written as

p e & 'y

(41) R, * - (—) L(e [En' o8 wr 4 F ' ein wtlve n

. . nX onag
(6, cos ST H sinkt)) en Soein SR
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ERESLN R
2, -y R
which, for small BO, simplify to

s Ly P

(un - K

'
EFn

(h2) 200 ¥aluB(u? 32, 2

22 2 2
R L R

2 2

g = - MR R a2 2

In order to calculate the corvelation function for the bending
stress, wve firat calculate the bending moment M(x,t):
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(3) Nxe) = 51 Puy/ex®

Thus the bending moment correlation RM my be calculated from

2 2 3

%, 3, 3 Py,

* E0ix,t) Mzt + 1)) = (5% B _Bu L (g2 OB

B ’ ’ LAY oo

When (35) is substitutsd, this gives
00

() R = (ncaxz/n)ii 8,()am/L)* s1a (ome/L) sin (mt/L)

o
An examination of Sn('r) shovs that it is 0(1/n6)< Hencs
) .0 = o(1/a?)

Therefore, we may conclude that (4h) converges though possibly quite
slovly, The maximum bending stress is glven by o = ML where Z is the
ssction modulus of the besm. The bending strass correlation would
therefore be

00
45) R, « 2 %R0M(x,0) M(e,t s 1)) {nc"x?/x.zZ)X(nw/n)“ 5,00
= n=l

sin (amx/L) sin (omt/L)

6. Stress Correlations for Other Randcm Loadings
=" OEe lor Other Random loadings

Two other special types of loadings are of Practical importancs.

They are the purely rendom pressure and purely random concentratsd
fandon| Bure’y random concentratsd
load of which the first is reprascated by a pressurs correlation of

ths form



(16} R, =Dy b(1)

where D1 1s the constant spectral density of pressure P(x,t). The
Daximunm bending etress correlation in this cese, calculated on the
‘besis of the classical (Bernoulti-Euler) theory, is given by

00
“n 5, . @' %) ) mn () ot (ale/L) etn (ar /i)

m,nal,3,5,.

where

L T (e ut e (- e )

sin Idn‘l‘]

(48)

EITSIN (uy + un)2]'1[25 o8 U - (¢ w ) ein wrll

w, = (a'lln" e ) @3 pAEI , b /g

or
BB /AT, N

In the cass of purely random concentrated losd acting at x = a, ths
losd correlation ts

(49) RF * D, b(x - a) 5(t - a) a(r)

The maximum bending stress correlation, based on the classical theory,

in given in [4]. The results based on the Timoshenko model is s follows:
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a0
(50) ®, = (k»zlzce/r.zzz)z Spn(®) (w1/0)% (ar/1)? st (wmm/L)
x 2,01

sin (om/L) “(mmx/L) sin (ome/L)

vhere

o0
o) f VR W (r e 1) ar
-00

with W, &lven by the first of (28). For other types of load correla.

tions, see [4].

T. Mumerical Exasple and Discussion

An electronic digital computer was used to calculate the displace-

ment on maximus stress correlations at x = ¢ (the mean square values)

for the case of purely random loading., The steel beam used vas neither

thick nor thin (L/r = 20) and had the following characteristics
- 6 - 6

E = 50 x 10" pai G =12 x 10 psi
k= 5/6 A p = 0.285 lb/in}

L/r =20 5 u1/2w =151.5 cps “1/“"' = 3900 cps y
x =1.0
a, = = 95.8; 700.

The series for l\' and &' converge extremely rapidly, thus requiring
B
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the calculations of only the first few terms. The seriee for Hu is
x

hovever very slowly convergent. For a fair accuracy, it was necessary
to take into sccount 100 terms of the series. This, of course, was to
be expected, since the Bernoulli-Euler Theory led to divergence for

this quantity (4]. The results of these computatione are plotted in
Figures 2 - 5, For the purpose of comparison, the results of the
Bernoulli-Fuler Theory is also plotted in Figures 2 and 3. It is clear
from these curves that Bernoulli-Euler beam theory ie satisfactory for
calculations of the mean equare of the displacement. The curves of
Tigures 4 and 5 vere, on the other hend, not cbtainable from this theory.
Figure 4 shovs thet the mean square of the bending stress is almost con-
etant along the beam. According to Figure 5, this quantity, in time,

is nearly purely random, as effectively indicated by the calculations
based on the classical beam thsory [4). The damping has the effect

©of reducing the sharpness of the correlation at BT = O,

In conclusion, the Bernoulli-Eulsr beaa theory represents an
adequate model for studying random vibrations of bewms, vhen only the
mean displaciments are sought, If the mean bending stress is desired,
it is necassary to uss a more iwproved theory, The Timoshenko beam
theory, as indicatad by the present atudy, appears to be adequate for
this purpose, The series obtsined for the mesn square bending stress
is, however, slowly convergent. It would sess desirable to in.orporate
some form of internal demping to the theory so a8 to improvs the con-«

vergence and to bring the theory into closer Sgreement with reality.
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DISPLACEMENT CORRELATION FUNGTION
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FIGURE 3, DISPLACEMENT CORRELATION
FUNCTION ( Unnormalized)  vs.
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